Computational modeling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials

نویسنده

  • L. MISHNAEVSKY
چکیده

A computational approach to the optimization of service properties of two-phase materials (in this case, fracture resistance of tool steels) by varying their microstructure is developed. The main points of the optimization of steels are as follows: (1) numerical simulation of crack initiation and growth in real microstructures of materials with the use of the multiphase finite elements (MPFE) and the element elimination technique (EET), (2) simulation of crack growth in idealized quasi-real microstructures (net-like, band-like and random distributions of the primary carbides in the steels) and (3) the comparison of fracture resistances of different microstructures and (4) the development of recommendations to the improvement of the fracture toughness of steels. The fracture toughness and the fractal dimension of a fracture surface are determined numerically for each microstructure. It is shown that the fracture resistance of the steels with finer microstructures is sufficiently higher than that for coarse microstructures. Three main mechanisms of increasing fracture toughness of steels by varying the carbide distribution are identified: crack deflection by carbide layers perpendicular to the initial crack direction, crack growth along the network of carbides and crack branching caused by damage initiation at random sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Experiment in the Mechanics of Materials

A computational approach to the optimization of fracture resistance of multiphase materials (here high speed steels) by varying their microstructure is presented. The main points of the optimization of steels are as folIows: (1) development and verification of the model: numerical simulation of crack initiation and growth in real microstructures of steels, (2) computational experiment: simulati...

متن کامل

Numerical analysis of the effect of microstructures of particle-reinforced metallic materials on the crack growth and fracture resistance

This paper presents a systematical computational study of the effect of microstructures of materials reinforced with brittle hard particles on their fracture behavior and toughness. Crack growth in particle-reinforced materials (here, in high speed steels) with various artificially designed arrangements of brittle inclusions is simulated using microstructure-based finite element meshes and an e...

متن کامل

A dynamic lattice model for heterogeneous materials

In this paper, the mechanical behavior of three-phase inhomogeneous materials is modeled using the meso-scale model with lattice beams for static and dynamic analyses. The Timoshenko beam theory is applied instead of the classical Euler-Bernoulli beam theory and the mechanical properties of lattice beam connection are derived based on the continuum medium using the non-local continuum theory. T...

متن کامل

Propagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor

Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...

متن کامل

A Review of Peridynamics and its Applications; Part1: The Models based on Peridynamics

Peridynamics is a nonlocal version of the continuum mechanics, in which partial differential equations are replaced by integro-differential ones. Due to not using spatial derivatives of the field variables, it can be applied to problems with discontinuities. In the primary studies, peridynamics has been used to simulate crack propagation in brittle materials. With proving the capabilities of pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003